Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.605
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38656402

RESUMO

The combination of shikonin (SKN) and gefitinib (GFB) can reverse the drug resistance of lung cancer cells by affecting energy metabolism. However, the poor solubility of SKN and GFB limits their clinical application because of low bioavailability. Wheat germ agglutinin (WGA) can selectively bind to sialic acid and N-acetylglucosamine on the surfaces of microfold cells and enterocytes, and is a targeted biocompatible material. Therefore, we created a co-delivery micelle system called SKN/GFB@WGA-micelles with the intestinal targeting functions to enhance the oral absorption of SKN and GFB by promoting mucus penetration for nanoparticles via oral administration. In this study, Caco-2/HT29-MTX-E12 co-cultured cells were used to simulate a mucus/enterocyte dual-barrier environment, and HCC827/GR cells were used as a model of drug-resistant lung cancer. We aimed to evaluate the oral bioavailability and anti-tumor effect of SKN and GFB using the SKN/GFB@WGA-micelles system. In vitro and in vivo experimental results showed that WGA promoted the mucus penetration ability of micelles, significantly enhanced the uptake efficiency of enterocytes, improved the oral bioavailability of SKN and GFB, and exhibited good anti-tumor effects by reversing drug resistance. The SKN/GFB@WGA-micelles were stable in the gastrointestinal tract and provided a novel safe and effective drug delivery strategy.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38663815

RESUMO

BACKGROUND: The relative utility of eosinophil peroxidase (EPX) and blood and sputum eosinophil counts as disease biomarkers in asthma is uncertain. OBJECTIVE: To determine the utility of EPX as a biomarker of systemic and airway eosinophilic inflammation in asthma. METHODS: EPX protein was measured by immunoassay in serum and sputum in 110 healthy controls to establish a normal reference range and in repeated samples of serum and sputum collected during three years of observation in 480 participants in the Severe Asthma Research Program (SARP)-3. RESULTS: Over three years, EPX levels in asthma patients were higher than normal in 27-31% of serum samples and 36-53% of sputum samples. Eosinophils and EPX correlated better in blood than in sputum (rs values of 0.74 and 0.43, respectively), and high sputum EPX levels occurred in 27% of participants with blood eosinophil counts < 150 cells/uL and 42% of participants with blood eosinophil counts 150-299 cells/uL. Patients with persistently high sputum EPX values for three years were characterized by severe airflow obstruction, frequent exacerbations, and high mucus plug scores. In 59 asthma patients who started mepolizumab during observation, serum EPX levels normalized in 96% but sputum EPX normalized in only 49%. Lung function remained abnormal even when sputum EPX normalized. CONCLUSION: Serum EPX is a valid protein biomarker of systemic eosinophilic inflammation in asthma, and sputum EPX levels are a more sensitive biomarker of airway eosinophilic inflammation than sputum eosinophil counts. Eosinophil measures in blood frequently miss airway eosinophilic inflammation, and mepolizumab frequently fails to normalize airway eosinophilic inflammation even though it invariably normalizes systemic eosinophilic inflammation.

3.
Front Pediatr ; 12: 1387171, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38665380

RESUMO

Introduction: Meconium ileus (MI) is a life-threatening obstruction of the intestines affecting ∼15% of newborns with cystic fibrosis (CF). Current medical treatments for MI often fail, requiring surgical intervention. MI typically occurs in newborns with pancreatic insufficiency from CF. Meconium contains mucin glycoprotein, a potential substrate for pancreatic enzymes or mucolytics. Our study aim was to determine whether pancreatic enzymes in combination with mucolytic treatments dissolve obstructive meconium using the CF pig model. Methods: We collected meconium from CF pigs at birth and submerged it in solutions with and without pancreatic enzymes, including normal saline, 7% hypertonic saline, and the reducing agents N-acetylcysteine (NAC) and dithiothreitol (DTT). We digested meconium at 37 °C with agitation, and measured meconium pigment release by spectrophotometry and residual meconium solids by filtration. Results and discussion: In CF pigs, meconium appeared as a solid pigmented mass obstructing the ileum. Meconium microscopically contained mucus glycoprotein, cellular debris, and bile pigments. Meconium fragments released pigments with maximal absorption at 405 nm after submersion in saline over approximately 8 h. Pancreatic enzymes significantly increased pigment release and decreased residual meconium solids. DTT did not improve meconium digestion and the acidic reducing agent NAC worsened digestion. Pancreatic enzymes digested CF meconium best at neutral pH in isotonic saline. We conclude that pancreatic enzymes digest obstructive meconium from CF pigs, while hydrating or reducing agents alone were less effective. This work suggests a potential role for pancreatic enzymes in relieving obstruction due to MI in newborns with CF.

4.
Respirol Case Rep ; 12(4): e01359, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38660339

RESUMO

In patients presenting with abnormal pulmonary nodules, especially those with a history of asthma, allergic bronchopulmonary mycosis should be considered. Eosinophil counts and IgE levels should be checked in such patients.

5.
J Trace Elem Med Biol ; 84: 127459, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38640745

RESUMO

Trace elements such as zinc, manganese, copper, or iron are essential for a wide range of physiological functions. It is therefore crucial to ensure an adequate supply of these elements to the body. Many previous investigations have dealt with the role of transport proteins, in particular their selectivity for, and competition between, different ions. Another so far less well investigated major factor influencing the absorption of trace elements seems to be the intestinal mucus layer. This gel-like substance covers the entire gastrointestinal tract and its physiochemical properties can be mainly assigned to the glycoproteins it contains, so-called mucins. Interaction with mucins has already been demonstrated for some metals. However, knowledge about the impact on the respective bioavailability and competition between those metals is still sketchy. This review therefore aims to summarize the findings and knowledge gaps about potential effects regarding the interaction between gastrointestinal mucins and the trace elements iron, zinc, manganese, and copper. Mucins play an indispensable role in the absorption of these trace elements in the neutral to slightly alkaline environment of the intestine, by keeping them in a soluble form that can be absorbed by enterocytes. Furthermore, the studies so far indicate that the competition between these trace elements for uptake already starts at the intestinal mucus layer, yet further research is required to completely understand this interaction.

6.
Int J Biol Macromol ; 267(Pt 2): 131434, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38614182

RESUMO

The gastrointestinal (GI) tract's mucus layer serves as a critical barrier and a mediator in drug nanoparticle delivery. The mucus layer's diverse molecular structures and spatial complexity complicates the mechanistic study of the diffusion dynamics of particulate materials. In response, we developed a bi-component coarse-grained mucus model, specifically tailored for the colorectal cancer environment, that contained the two most abundant glycoproteins in GI mucus: Muc2 and Muc5AC. This model demonstrated the effects of molecular composition and concentration on mucus pore size, a key determinant in the permeability of nanoparticles. Using this computational model, we investigated the diffusion rate of polyethylene glycol (PEG) coated nanoparticles, a widely used muco-penetrating nanoparticle. We validated our model with experimentally characterized mucus pore sizes and the diffusional coefficients of PEG-coated nanoparticles in the mucus collected from cultured human colorectal goblet cells. Machine learning fingerprints were then employed to provide a mechanistic understanding of nanoparticle diffusional behavior. We found that larger nanoparticles tended to be trapped in mucus over longer durations but exhibited more ballistic diffusion over shorter time spans. Through these discoveries, our model provides a promising platform to study pharmacokinetics in the GI mucus layer.

7.
J Pept Sci ; : e3599, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38567550

RESUMO

Mucus is a complex biological hydrogel that acts as a barrier for almost everything entering or exiting the body. It is therefore of emerging interest for biomedical and pharmaceutical applications. Besides water, the most abundant components are the large and densely glycosylated mucins, glycoproteins of up to 20 MDa and carbohydrate content of up to 80 wt%. Here, we designed and explored a library of glycosylated peptides to deconstruct the complexity of mucus. Using the well-characterized hFF03 coiled-coil system as a hydrogel-forming peptide scaffold, we systematically probed the contribution of single glycans to the secondary structure as well as the formation and viscoelastic properties of the resulting hydrogels. We show that glycan-decoration does not affect α-helix and coiled-coil formation while it alters gel stiffness. By using oscillatory macrorheology, dynamic light scattering microrheology, and fluorescence lifetime-based nanorheology, we characterized the glycopeptide materials over several length scales. Molecular simulations revealed that the glycosylated linker may extend into the solvent, but more frequently interacts with the peptide, thereby likely modifying the stability of the self-assembled fibers. This systematic study highlights the interplay between glycan structure and hydrogel properties and may guide the development of synthetic mucus mimetics.

8.
Sci Rep ; 14(1): 7665, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561398

RESUMO

The integrity of the intestinal mucus barrier is crucial for human health, as it serves as the body's first line of defense against pathogens. However, postnatal development of the mucus barrier and interactions between maturity and its ability to adapt to external challenges in neonatal infants remain unclear. In this study, we unveil a distinct developmental trajectory of the mucus barrier in preterm piglets, leading to enhanced mucus microstructure and reduced mucus diffusivity compared to term piglets. Notably, we found that necrotizing enterocolitis (NEC) is associated with increased mucus diffusivity of our large pathogen model compound, establishing a direct link between the NEC condition and the mucus barrier. Furthermore, we observed that addition of sodium decanoate had varying effects on mucus diffusivity depending on maturity and health state of the piglets. These findings demonstrate that regulatory mechanisms governing the neonatal mucosal barrier are highly complex and are influenced by age, maturity, and health conditions. Therefore, our results highlight the need for specific therapeutic strategies tailored to each neonatal period to ensure optimal gut health.


Assuntos
Ácidos Decanoicos , Enterocolite Necrosante , Muco , Recém-Nascido , Animais , Humanos , Suínos , Inflamação , Suplementos Nutricionais , Enterocolite Necrosante/tratamento farmacológico , Mucosa Intestinal
9.
Phytomedicine ; 129: 155541, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38579640

RESUMO

BACKGROUND: Diarrheal irritable bowel syndrome (IBS-D), characterized primarily by the presence of diarrhea and abdominal pain, is a clinical manifestation resulting from a multitude of causative factors. Furthermore, Sishen Wan (SSW) has demonstrated efficacy in treating IBS-D. Nevertheless, its mechanism of action remains unclear. METHODS: A model of IBS-D was induced by a diet containing 45 % lactose and chronic unpredictable mild stress. Additionally, the impact of SSW was assessed by measuring body weight, visceral sensitivity, defecation parameters, intestinal transport velocity, intestinal neurotransmitter levels, immunohistochemistry, and transmission electron microscopy analysis. Immunofluorescent staining was used to detect the expression of Mucin 2 (MUC2) and Occludin in the colon. Western blotting was used to detect changes in proteins related to tight junction (TJ), autophagy, and endoplasmic reticulum (ER) stress in the colon. Finally, 16S rRNA amplicon sequencing was used to monitor the alteration of gut microbiota after SSW treatment. RESULTS: Our study revealed that SSW administration resulted in reduced visceral sensitivity, improved defecation parameters, decreased intestinal transport velocity, and reduced intestinal permeability in IBS-D mice. Furthermore, SSW promotes the secretion of colonic mucus by enhancing autophagy and inhibiting ER stress. SSW treatment caused remodeling of the gut microbiome by increasing the abundance of Blautia, Muribaculum and Ruminococcus torques group. CONCLUSION: SSW can improve intestinal barrier function by promoting autophagy and inhibiting ER stress, thus exerting a therapeutic effect on IBS-D.

10.
Integr Zool ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38556643

RESUMO

The tree frog is a prominent amphibian among terrestrial vertebrates known for its ability to adhere to various surfaces through the capillary forces of water in the microchannels between micropillars on its disc-shaped toe pads, a phenomenon known as wet adhesion. However, the secretion pattern of mucus on the attachment surface of living tree frog toe pads and the distribution of active mucus pores (AMPs) have not yet been fully elucidated. In this study, we utilized synchrotron X-ray micro-computed tomography and interference reflection microscopy to obtain the spatial distribution of the entire population of ventral mucus glands on the toe pads of living tree frogs and the real-time mucus secretion patterns from the ventral mucus pores on the contact surface under different environmental conditions. We observed that the number and secretion frequency of AMPs on the toe pad are regulated according to environmental conditions. Such dynamic mucus secretion on the tree frog's toe pad could contribute to the understanding of capillary force regulation for wet adhesion and the development of adhesive surfaces by mimicking the mucus-secreting toe pad.

11.
J Pharm Sci ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38582281

RESUMO

The oral formulation design for colon-specific drug delivery brings some therapeutic benefits in the ulcerative colitis treatment. We recently reported the specific delivery of hemoglobin nanoparticles-conjugating 5-aminosalicylic acid (5-ASA-HbNPs) to the inflamed site. In the current study, the therapeutic effect of the 5-ASA-HbNPs formulation was confirmed in vivo. This evaluation of 5-ASA-HbNPs not only shows longer colonic retention time due to adhesive properties, also provides full support for it as compared with free 5-ASA. It was considered as a suitable bio-adhesive nanoparticle with mucoadhesive property to pass through the mucus layer and accumulate into the mucosa. In UC model mice, a two-fold decrease in the disease activity indexes and colon weight/length ratios was significantly observed in the group treated with 5-ASA-HbNPs. This group received one percent of the standard dosage of 5-ASA (50 µg/kg), while, a similar result was observed for a significant amount of free 5-ASA (5 mg/kg). Furthermore, microscopic images of histological sections of the extracted colons demonstrated that the 5-ASA-HbNPs and 5-ASA groups displayed instances of inflammatory damage within the colon. However, in comparison to the colitis group, the extent of this damage was relatively moderate, suggesting 5-ASA-HbNPs improved therapeutic efficacy with the lower dosage form.

12.
Hum Cell ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632190

RESUMO

Among mucus-producing lung cancers, invasive mucinous adenocarcinoma of the lung is a rare and unique subtype of pulmonary adenocarcinoma. Notably, mucus production may also be observed in the five subtypes of adenocarcinoma grouped under the higher-level diagnosis of Invasive Non-mucinous Adenocarcinomas (NMA). Overlapping pathologic features in mucus-producing tumors can cause diagnostic confusion with significant clinical consequences. In this study, we established lung tumoroids, PDT-LUAD#99, from a patient with NMA and mucus production. The tumoroids were derived from the malignant pleural effusion of a patient with lung cancer and have been successfully developed for long-term culture (> 11 months). Karyotyping by fluorescence in situ hybridization using an alpha-satellite probe showed that tumoroids harbored aneuploid karyotypes. Subcutaneous inoculation of PDT-LUAD#99 lung tumoroids into immunodeficient mice resulted in tumor formation, suggesting that the tumoroids were derived from cancer. Xenografts from PDT-LUAD#99 lung tumoroids reproduced the solid adenocarcinoma with mucin production that was observed in the patient's metastatic lymph nodes. Immunoblot analysis showed MUC5AC secretion into the culture supernatant of PDT-LUAD#99 lung tumoroids, which in contradistinction was barely detected in the culture supernatants of NCI-A549 and NCI-H2122 pulmonary adenocarcinoma cells known for their mucin-producing abilities. Here, we established a novel high-mucus-producing lung tumoroids from a solid adenocarcinoma. This preclinical model may be useful for elucidating the pathogenesis of mucus-producing lung cancer.

13.
Int J Mol Sci ; 25(7)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38612809

RESUMO

Chorioamnionitis is a risk factor for necrotizing enterocolitis (NEC). Ureaplasma parvum (UP) is clinically the most isolated microorganism in chorioamnionitis, but its pathogenicity remains debated. Chorioamnionitis is associated with ileal barrier changes, but colonic barrier alterations, including those of the mucus barrier, remain under-investigated, despite their importance in NEC pathophysiology. Therefore, in this study, the hypothesis that antenatal UP exposure disturbs colonic mucus barrier integrity, thereby potentially contributing to NEC pathogenesis, was investigated. In an established ovine chorioamnionitis model, lambs were intra-amniotically exposed to UP or saline for 7 d from 122 to 129 d gestational age. Thereafter, colonic mucus layer thickness and functional integrity, underlying mechanisms, including endoplasmic reticulum (ER) stress and redox status, and cellular morphology by transmission electron microscopy were studied. The clinical significance of the experimental findings was verified by examining colon samples from NEC patients and controls. UP-exposed lambs have a thicker but dysfunctional colonic mucus layer in which bacteria-sized beads reach the intestinal epithelium, indicating undesired bacterial contact with the epithelium. This is paralleled by disturbed goblet cell MUC2 folding, pro-apoptotic ER stress and signs of mitochondrial dysfunction in the colonic epithelium. Importantly, the colonic epithelium from human NEC patients showed comparable mitochondrial aberrations, indicating that NEC-associated intestinal barrier injury already occurs during chorioamnionitis. This study underlines the pathogenic potential of UP during pregnancy; it demonstrates that antenatal UP infection leads to severe colonic mucus barrier deficits, providing a mechanistic link between antenatal infections and postnatal NEC development.


Assuntos
Corioamnionite , Infecções por Ureaplasma , Gravidez , Ovinos , Animais , Humanos , Feminino , Recém-Nascido , Infecções por Ureaplasma/complicações , Intestinos , Causalidade , Muco
14.
Clin Respir J ; 18(4): e13750, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38616354

RESUMO

BACKGROUND: Pulmonary mucinous adenocarcinoma is a special type of lung cancer. Its imaging manifestations are diverse, which brings challenges to clinical diagnosis. However, its formation mechanism is unclear. OBJECTIVE: The objective of this study is to analyse the relevant mechanisms of the formation of pulmonary mucinous adenocarcinoma by observing its different imaging and pathological manifestations. DATA AND METHODS: Retrospective analysis was conducted on imaging manifestations and pathological data of 103 patients with pulmonary mucinous adenocarcinoma confirmed intraoperatively or pathologically. RESULTS: Forty-three patients had pulmonary mucinous adenocarcinoma with a solitary nodule/mass, 41 patients with localized pneumonia and 19 patients with diffuse pneumonia. Their CT manifestations included 'falling snowflake sign', ground-glass opacity close to the heart, vacuous signs/honeycombing and withered tree branches. Under the microscope, all the three types of pulmonary mucinous adenocarcinoma had visibly formed mucus lakes but were made of tumour cells with totally different shapes, which included the goblet-like shape (tall column-like shape) and quasi-circular shape. Tall column-shaped tumour cells were negative or weakly positive for thyroid transcription factor-1 (TTF-1) and strongly positive for ALK mutation, whereas quasi-circular tumour cells were positive for TTF-1 and less positive for ALK mutation. CONCLUSION: The different imaging manifestations of mucinous adenocarcinoma are possibly due to the different amounts or viscosity of mucus produced, and the mechanisms of its formation may include (1) tumour cells in different shapes have different abilities to produce mucus; (2) tumours in different stages produce different amounts or viscosity of mucus; and (3) the TTF-1 and ALK genes affect the production of mucus.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Pneumonia , Humanos , Estudos Retrospectivos , Neoplasias Pulmonares/diagnóstico por imagem , Receptores Proteína Tirosina Quinases
15.
Chem Biol Interact ; 395: 111014, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38648921

RESUMO

There is an increasing appreciation that colonic barrier function is closely related to the development and progression of colitis. The mucus layer is a crucial component of the colonic barrier, responsible for preventing harmful bacteria from invading the intestinal epithelium and causing inflammation. Furthermore, a defective mucus barrier is also a significant characteristic of ulcerative colitis (UC). Biochanin A (BCA), an isoflavonoid, has garnered increasing interest due to its significant biological activities. However, the impact of BCA on UC has not been reported yet. In this study, we used a dextran sodium sulfate (DSS)-induced ulcerative colitis model and the Muc2 deficient (Muc2-/-) mice spontaneous colitis model to explore the mechanisms of BCA in the treatment of UC. Here, we verified that DSS-induced UC was observably attenuated and spontaneous colitis in Muc2-/- mice was relieved by BCA. Treatment with BCA improved colitis-related symptoms and reduced intestinal permeability by upregulating the levels of goblet cells and tight junction (TJ) proteins. In addition, we confirmed that BCA promotes autophagy through the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR)/Unc-51-like kinase 1 (ULK1) pathway, thereby alleviating DSS-induced UC. In addition, the administration of BCA was able to reduce apoptosis and promote proliferation by suppressing Cleaved Caspase-3 (Cleaved Cas-3) expression, and increasing PCNA and Ki67 levels. Further research revealed that BCA treatment ameliorated spontaneous colitis and alleviated epithelial damage in Muc2-/- mice by restoring the intestinal barrier and promoting autophagy. Our results demonstrated that BCA alleviated UC by enhancing intestinal barrier function and promoting autophagy. These findings indicate that BCA may be a novel treatment alternative for UC.

16.
Sci Total Environ ; 927: 172212, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38580121

RESUMO

Organophosphate esters (OPEs) have garnered significant attention in recent years. In view of the enormous ecosystem services value and severe degradation of coral reefs in the South China Sea, this study investigated the occurrence, distribution, and bioaccumulation of 11 OPEs in five coral regions: Daya Bay (DY), Weizhou Island (WZ), Sanya Luhuitou (LHT), Xisha (XS) Islands, and Nansha (NS) Islands. Although OPEs were detected at a high rate, their concentration in South China Sea seawater (1.56 ± 0.89 ng L-1) remained relatively low compared to global levels. All OPEs were identified in coral tissues, with Luhuitou (575 ± 242 ng g-1 dw) showing the highest pollution levels, attributed to intense human activities. Coral mucus, acting as a defense against environmental stresses, accumulated higher ∑11OPEs (414 ± 461 ng g-1 dw) than coral tissues (412 ± 197 ng g-1 dw) (nonparametric test, p < 0.05), and their compositional characteristics varied greatly. In the case of harsh aquatic environments, corals increase mucus secretion and then accumulate organic pollutants. Tissue-mucus partitioning varied among coral species. Most OPEs were found to be bioaccumulative (BAFs >5000 L kg-1) in a few coral tissue samples besides Triphenyl phosphate (TPHP). Mucus' role in the bioaccumulation of OPEs in coral shouldn't be ignored.


Assuntos
Antozoários , Monitoramento Ambiental , Ésteres , Organofosfatos , Poluentes Químicos da Água , Animais , China , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/metabolismo , Organofosfatos/análise , Organofosfatos/metabolismo , Ésteres/análise , Bioacumulação , Água do Mar/química , Recifes de Corais
17.
Elife ; 122024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38593125

RESUMO

Inflammation in ulcerative colitis is typically restricted to the mucosal layer of distal gut. Disrupted mucus barrier, coupled with microbial dysbiosis, has been reported to occur prior to the onset of inflammation. Here, we show the involvement of vesicular trafficking protein Rab7 in regulating the colonic mucus system. We identified a lowered Rab7 expression in goblet cells of colon during human and murine colitis. In vivo Rab7 knocked down mice (Rab7KD) displayed a compromised mucus layer, increased microbial permeability, and depleted gut microbiota with enhanced susceptibility to dextran sodium-sulfate induced colitis. These abnormalities emerged owing to altered mucus composition, as revealed by mucus proteomics, with increased expression of mucin protease chloride channel accessory 1 (CLCA1). Mechanistically, Rab7 maintained optimal CLCA1 levels by controlling its lysosomal degradation, a process that was dysregulated during colitis. Overall, our work establishes a role for Rab7-dependent control of CLCA1 secretion required for maintaining mucosal homeostasis.


Assuntos
Colite , Células Caliciformes , Animais , Humanos , Camundongos , Canais de Cloreto/genética , Canais de Cloreto/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Colo/metabolismo , Modelos Animais de Doenças , Células Caliciformes/metabolismo , Homeostase , Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL
18.
Cureus ; 16(3): e55884, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38595892

RESUMO

Allergic bronchopulmonary aspergillosis (ABPA) often necessitates treatment with systemic steroids and antifungals, which are associated with relapses and side effects. We report an 82-year-old woman with eosinophilic asthma, experiencing sputum production and dyspnea, who was diagnosed with ABPA based on her chest CT, pulmonary function tests, and elevated blood eosinophils and immunoglobulin E. Due to the presence of osteoporosis and diabetes, standard steroid therapy was considered a high risk. Instead, we administered dupilumab, an interleukin 4 receptor alpha (IL4-Rα) antibody targeting Th2 cytokine signaling. Remarkable improvements were observed within two weeks, including reduced sputum and dyspnea. After 12 weeks, significant enhancements in asthma control and lung function, along with decreased fractional exhaled nitric oxide (FeNO) levels were noted, with chest CT showing resolution of most of the mucus plugs. This case demonstrates dupilumab's potential as a viable ABPA treatment alternative, particularly for patients who are unsuitable for systemic steroids. More research on the long-term effectiveness and safety of such biologics is needed.

19.
Allergol Int ; 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38594175

RESUMO

Eosinophilic inflammation is primarily characterized by type 2 immune responses against parasitic organisms. In the contemporary human being especially in developed countries, eosinophilic inflammation is strongly associated with allergic/sterile inflammation, and constitutes an undesired immune reaction. This situation is in stark contrast to neutrophilic inflammation, which is indispensable for the host defense against bacterial infections. Among eosinophilic inflammatory disorders, massive accumulation of eosinophils within mucus is observed in certain cases, and is often linked to the distinctive clinical finding of mucus with high viscosity. Eosinophilic mucus is found in a variety of diseases, including chronic allergic keratoconjunctivitis, chronic rhinosinusitis encompassing allergic fungal sinusitis, eosinophilic otitis media, eosinophilic sialodochitis, allergic bronchopulmonary aspergillosis/mycosis, eosinophilic plastic bronchitis, and eosinophilic asthma. In these pathological conditions, chronic inflammation and tissue remodeling coupled with irreversible organ damage due to persistent adhesion of toxic substances and luminal obstruction may impose a significant burden on the body. Eosinophils aggregate in the hyperconcentrated mucus together with cell-derived crystals, macromolecules, and polymers, thereby affecting the biophysical properties of the mucus. This review focuses on the clinically significant challenges of mucus and discusses the consequences of activated eosinophils on the mucosal surface that impact mucus and persistent inflammation.

20.
Macromol Biosci ; : e2300437, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625085

RESUMO

The integrity of the protective mucus layer as a primary defense against pathogen invasion and microbial leakage into the intestinal epithelium can be compromised by the effects of antibiotics on the commensal microbiome. Changes in mucus integrity directly affect the solvent viscosity in the immediate vicinity of the mucin network, i.e., the nanoviscosity, which in turn affects both biochemical reactions and selective transport. To assess mucus nanoviscosity, a reliable readout via the viscosity-dependent fluorescence lifetime of the molecular rotor dye Cy3 is established and nanoviscosities from porcine and murine ex vivo mucus are determined. To account for different mucin concentrations due to the removal of digestive residues during mucus collection, the power law dependence of mucin concentration on viscosity is used. The impact of antibiotics combinations (meropenem/vancomycin, gentamycin/ampicillin) on ex vivo intestinal mucus nanoviscosity is presented. The significant increase in viscosity of murine intestinal mucus after treatment suggests an effect of antibiotics on the microbiota that affects mucus integrity. The presented method will be a useful tool to assess how drugs, directly or indirectly, affect mucus integrity. Additionally, the method can be utilized to analyze the role of mucus nanoviscosity in health and disease, as well as in drug development. This article is protected by copyright. All rights reserved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...